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Regio- and stereoselective synthesis of methyl
5-methylenetetrahydropyran-3-carboxylates from Baylis–Hillman
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Abstract—Two types of regioisomeric methyl 5-methylenetetrahydropyran-3-carboxylate derivatives 3a–c and 6a–c were synthe-
sized stereoselectively starting from the Baylis–Hillman adducts via the allyltributylstannane-mediated vinyl radical cyclization as
the key step.
� 2006 Elsevier Ltd. All rights reserved.
Radical cyclization of dienes and enynes using radical
transfer reagents provides a powerful method for con-
structing many important carbocycles and hetero-
cycles.1–3 Among the radical transfer reagents, the use of
n-Bu3SnH has been studied extensively because of the
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ease of hydrogen abstraction. The use of allyltributyl-
stannane as the radical transfer reagent has been investi-
gated less thoroughly than n-Bu3SnH presumably due to
its low reactivity.2,3 Although the reactivity of
allyltributylstannane was low, the radical cyclization of
ibutylstannane; Radical cyclization.
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Table 1. Synthesis of regioisomeric methyl 5-methyleneterahydro-
pyran-3-carboxylatesa

Entry Substrate Product (%)
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Complex mixtures

a Conditions: (i) n-Bu3SnCH2CH@CH2 (4.0 equiv), AIBN (1.0 equiv),
neat, 80 �C, 1 h; (ii) HCl, ether, 0 �C to rt, 1 h.

b Starting material 4d was recovered in 56% and trace amounts (<5%)
of 6d was isolated with some impurity (�10%).
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enynes using this reagent can provide an interesting
cyclic compounds having additional allyl group, which
can be further transformed.

Recently Shanmugam and Rajasingh reported the syn-
thesis of 3-methylenetetrahydropyran 2a as shown in
Scheme 1 via n-Bu3SnH-mediated radical cyclization
of Baylis–Hillman derivative 1a.4 Thus we reasoned that
if we use allyltributylstannane instead of the n-Bu3SnH
during the radical cyclization, allyl moiety-containing
methylenetetrahydropyran 3a could be synthesized as
depicted in Scheme 1.

However, the reaction of starting material 1a and allyl-
tributylstannane (1.5 equiv) in the presence of AIBN
(10 mol%) in benzene showed very complex mixtures
of products. We could not observe nor isolate any major
component from the reaction mixtures, unfortunately.2,3

After many trials, to our delight, we found that 5-methyl-
enetetrahydropyran derivative 3a could be formed in
75% yield when we used excess amounts of allyltribut-
ylstannane (4.0 equiv) and AIBN (1.0 equiv) without
solvent at around 80 �C (Scheme 1).5 The reaction mech-
anism for the selective formation of 3a could be ex-
plained as follows:4 (i) generation of vinyl radical at
the triple bond, (ii) cyclization by the attack at the b-po-
sition of acrylate moiety, (iii) quenching with allyltri-
butylstannane to produce 3a. As shown in Table 1,
compounds 3b and 3c were synthesized stereo- and
regioselectively from 1b and 1c, respectively (entries 2
and 3 in Table 1). The stereochemistry of 3a–c could
be regarded as shown according to the reported paper.4

Recently we reported the synthesis of 5a by n-Bu3SnH-
mediated radical cyclization of 4a (Scheme 2).6 The rad-
ical cyclization step occurred via the 5-exo-trig mode of
the corresponding alkenyl radical of 4a. We could not
obtain the exo-methylenetetrahydropyran derivative,
which can be formed by the 6-endo-trig mode.6 Kineti-
cally favored five-membered benzylic radical intermedi-
ate A reacted rapidly with reactive n-Bu3SnH to give
the product 5a as the sole product (Scheme 2).3a But,
when we subjected 4a under the above reaction condi-
tions (excess amounts of allyltributylstannane and
AIBN) we obtained 6a instead of 7a to our surprise.

In this case, the situation was the same with the previous
one (Scheme 1): that is the reaction of starting material
4a and allyltributylstannane (1.5 equiv) in the presence
of AIBN (10 mol%) in benzene showed very complex
mixtures of products. When we used excess amounts
of allyltributylstannane (4.0 equiv) and AIBN
(1.0 equiv) in a neat condition, we obtained 5-methylene-
tetrahydropyran derivative 6a in 82% yield (Scheme
2).7 Although there were some minor spots on TLC
(which could be the other isomer or simple reduction
compound of the triple bond), generation of 6a was
the principle reaction pathway based on its high isolated
yield. The reaction mechanism for the selective forma-
tion of 6a could be postulated as follows: (i) generation
of vinyl radical, which forms the kinetically favored five-
membered intermediate A via the 5-exo-trig mode, (ii)
rearrangement of A to the six-membered radical C via
the unstable bicyclic intermediate B, (iii) quenching of
C by allyltributylstannane at the least sterically hindered
side to produce 6a after hydrodestannylation.4 The
structure of 6a was confirmed by its NMR, IR, and
MS data, and by comparison of the 1H NMR data with
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that of the regioisomeric compound 3a.7 The stereo-
chemistry of 6a could be easily assigned by NOE experi-
ments as shown in Figure 1. When we irradiated the
benzylic proton (d = 3.70 ppm) the allylic protons and
one of the exo-methylene protons showed 2.7% and
1.5% NOE increments, respectively.

Generation of vinyl radical might require much amount
of allyltributylstannane and AIBN due to the sluggish
reactivity of non-activated triple bond toward allylstann-
O

H

H
MeOOC

HPhHH

1.5%
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Figure 1. NOE results of 6a.
ylation.2a The generated benzyl radical A could not be
allylated effectively due to low reactivity of allyltri-
butylstannane again.3a,e Thus the benzyl radical A
rearranged into thermodynamically more stable
six-membered radical C,8 via the intermediate bicyclic
radical B. As previously reported when we used
n-Bu3SnH,6 the initial benzyl radical A was quenched
with n-Bu3SnH to form 5a (vide supra, Scheme 2).

In order to find the generality we carried out the reactions
with 4b–e and the results are summarized in Table 1 (en-
tries 5–8).6,9 From the ester moiety-containing substrates
4a–c we obtained 6a–c in good yields. However, we could
not isolate the expected compounds from the reactions
with 4d and 4e. The reason is not clear at this stage.

In summary, we disclosed the synthesis of regioisomeric
two types of methyl 5-methylenetetrahydropyran-3-
carboxylates via the allyltributylstannane-mediated rad-
ical cyclization as the key step starting from the easily



5788 S. Gowrisankar et al. / Tetrahedron Letters 47 (2006) 5785–5788
available Baylis–Hillman derivatives.4,6 Further studies
on the synthetic applications of synthesized compounds
are currently underway.
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